Chase Joyner

885 Homework 2

October 13, 2015

Problem 1:

(a) First note that

and so
P(Zj=1)=1-(1-p)"“

Define p* = 1 — (1 — p)°. Then, we have Z; b Bernoulli(p*). Recall that the MLE for a
Bernoulli random variable is the mean, and so

_ 1
Pr=Z==) 7.
j=1

By the invariance property of MLEs, the MLE of p satisfies

<

~

1-(1-p)°=p~
Solving for p and plugging in Z, we have
p=1-(1-2)"°
Then, we have by CLT,
Vn (pA* —p*) 5 N(0,p"(1—pY)).

Define a function g(z) = 1 — (1 — z)Y/¢. Then, ¢'(z) = 11— :1;)%_1, and so by the Delta
method,

V- S (0. G-,

Therefore, a (1 — a) x 100% asymptotic confidence interval for p is
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The R function for this problem can be found in the appendix. We have no simulation for
this problem since the function is used for other parts of Problem 1.



(b) Now we look at some results for these simulations. Below we have Figure 1, Figure 2, and
Figure 3, which show the bias, difference in asymptotic standard errors and sample standard
errors, and the coverage probabilities, respectively.
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It appears that as the sample size J increases, the bias, errors, and coverage probabilities
begin to act as they should. More specifically, the asymptotics seem to kick in pretty well
around J = 100. This is because the bias is almost 0 for .J = 100, and the variance bounces
around 0 for this sample size, and also the coverage probabilities seem to be closer to .95 and
stay there for J = 100. Also, we see that the standard errors increases in p, which is to be
expected because we have more 1s and Os as p increases, causing more variability. Lastly,
though difficult to see in the plots without color, as the pool sizes increase, the bias, variance,
and coverage probabilities become a bit worse. Actually, I expected perhaps the opposite
since larger pools would allow for more tests, which in turn we would gain more information.
However, maybe there is some sort of diminishing effect for larger pools, to the point where
we don’t gain more information.

Now we allow for different pool sizes ¢; and account for possible measurement error. Under
these assumptions, we have

P(Zj=1)=P(Z=112=1)P(Z;=1)+ P (Z =1 2;=0) P(Z; = 0)
= Se-pj+ (1 - Sp)(1 —pj) =:p}",

where p¥ =1 — (1 —p)%. Therefore, the likelihood function is

J ~ ~
L) = [Ter” (1= )2
j=1

At this point, we use R to optimize the log likelihood function to obtain the MLE 1/9\;*, and



therefore obtain p. Once obtaining p, we calculate the asymptotic variance to be

J
1 —~ ~
==V > Zilog (1) + (1= Z;)log (1 —p§*)}

(p)? dp Py dp?

1 (dp;*>2+ 1 dpy }
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where p¥ =1 — (1 —p)%,p;* = Se + (1 —p)9(1 — Se — Sp), and

1 A1 de;*] -

J :—Cj(].—Se_Sp)(]‘_p)cj_l

5= =cjle; = 1)(1 = Se = Sp)(1 —p)9~2.

Therefore, a (1 — a) x 100% asymptotic confidence interval for p is
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(d) Now we look at some results for these simulations. This is similar to part (b), however now
we look at how random pool sizes affects things. Again, below we have Figures 1, 2, and 3,
which show the bias, difference in asymptotic standard errors and sample standard errors,
and the coverage probabilities, respectively.
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Here, we again see that the bias diminishes as the sample size J increases and seems to do
pretty well around J = 100. Similarly, the difference in the asymptotic standard errors and
sample standard error diminishes as J increases. However, perhaps here one would prefer a
sample size of J = 200 or larger here based on Figure 2. One note to make here is that as
p heads towards 0, the standard errors blow up but as p increases, everything seems to work
properly. Lastly, the coverage probabilities seem to act similarly. As p heads towards zero,
since the errors blow up, the coverage is so large and so we have a coverage probability of 1.
As p increases however, the coverage probabilities bounce around 0.95 as expected.

Problem 2:
(a) As before, we have Z; ~ Bernoulli(p}), but now p; =1 — [172,(1 — pij) and

exp{x;; 3}

pij = p(Xig) = T
ij ij 1+ exp {Xéj B}

Therefore, we have
P(Zj=1)=P(Z=1|2=1)P(Z=1)+P(Z;=1|2;=0) P(Z; = 0)
= Se-pj+ (1= Sp)(1 —pj) = pj"

From this, we are able to write the likelihood for the measurement error prone observations
Z; as
J

J ~ ~
L(ﬁ | Z) _ Hp;*zg (1 _p;*)l—Zj’
j=1



and so we obtain the log likelihood function

J
UB) =Y Zjlogp}* + (1 — Z;) log(1 — pi*).
j=1

We now use R to maximize this.

By MLE theory, we know that

Define the function g(y) =

Vi (B8-8) 4 N(0.1(8)).

J(y) =

Therefore, by the Delta method,

Vn(Dij — pij) 4N o, <

exp{xj;y}
e ¥ S
1+6Xp{x¢j v}

Then,

exp{x,y}x,

exp{x;;B8}x;;

(1 +exp{xj;y})?*

Then, we have the asymptotic confidence interval

}/7\1] iZa/Q <(

I have written a simulation for this part, however my code was giving an error at times about
singular matrices or not being able to square root the hessian matrix that optim returned. I

can provide my code if necessary.

In the table below, we have the marginal tests, Hy: 8 =0 vs Hy: 8 # 0 for Kk =0,1,2,3.
Also, we have the MLEs for the regression coefficients. First, note that the LRT returned
negative numbers, indicating that the ratio was greater than 1. This cannot happen and so

exp{x};3}x;};

(1+ exp{x,B}

1+ exp{x},;8}

2
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there is a coding error somewhere, but I was unable to find it.

2
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Chlamydia Data Analysis

Ho:ﬁ():o Ho:ﬁlzo HoZ,BQ:O Ho:ﬁgzo
Estimate || g = —1.1318 || 51 = —0.0597 || B2 = 0.7868 || B3 = 0.0153
Wald Test 27.6691 55.91654 161.33315 0.4564274
P-value 0 0 0 0.648
LRT -2.006694 -2.020476 -2.040717 -2.00012

We see that the Wald test is indicating that 3 = 0 and so the number of hours playing video
games is not statistically significant. The LRT should return a similar conclusion if the code

were working properly.




